PP电子 PP电子平台建筑结构论文范文
来源:小编 | 发布时间: 2024-04-25 | 次浏览
根据不同的标准,建筑结构的分类也有所区别。根据不同的施工方法,建筑结构可分为混合结构、框架结构、剪力墙结构等。由于剪力墙具有较强的抗侧刚度和抗震性能,而且用钢量也比较小,因而在建筑结构设计中得以广泛应用。简单来说,剪力墙结构就是利用钢筋混凝土墙板来承受来自垂直方向和水平方向的力的结构。在设计剪力墙结构时,通常会使用钢筋混凝土墙板取代之前框架结构中的梁柱,从而提高承受荷载的能力。换言之,剪力墙结构主要指的是竖向的钢筋混凝土墙板,而横向仍然沿用钢筋混凝土的大楼板搭载在墙上,而这个结构就成为剪力墙结构
2.1剪力墙的厚度与高和宽相比,要小很多,几何特征类似于板,受力形态接近于柱,但其又与柱存在明显的区别,即其肢长和厚度的比值,当比值不超过3时,可以按照柱来计算,当比值介于3-5之间,则可作为异形柱,并按双向受压构件设计。
2.2在剪力墙结构中,墙作为平面构件,不仅需要承受来自平面作用的水平剪力和弯矩,同时还需要承受竖向压力。在这种状态下,剪力墙在水平作用下如同底部嵌固与基础悬臂梁在地震作用或风载下,因此,剪力墙不仅需要具备一定的刚度,还需要具备能够满足非弹性变形反复循环下的延性。
2.3剪力墙结构中最突出的特点就是在同一平面内刚度和承载力较大,而平面外刚度以及承载力则比较小。当剪力墙与平面外的梁相接时,会导致墙肢外平面外弯矩的发生,但一般不会对墙的平面外刚度和承载力造成影响,因此,应尽量避免开平面外搭接,如果遇到不得不搭接的情况,则应根据具体的相关规定采取合理的解决办法,以对剪力墙平面外的安全形成可靠保障。
2.4剪力墙的设计技术需要对竖向和水平作用下的结构整体进行综合分析,在求得内力后,按照偏压或偏拉进行正截面承载力和斜截面受剪承载力进行验算。一般情况下,在计算剪力墙承载力时,对带翼墙的计算宽度应当根据实际情况取最小值。
近几年来,剪力墙广泛应用于建筑结构设计当中,主要是由于其具有多方面的优势,具体来说包括了抗侧刚度大,侧移小;结果后自重大,抗震性能高;室内墙面平整。但同时也有其弊端,如施工复杂、造价较高。在具体的施工当中,剪力墙的开洞与否以及开洞尺寸的大小,可以具体分为以下几种情况:
3.1整体小开口剪力墙:开洞面积不小于15%,但仍属于面积较小的剪力墙,其受力特点在于弯矩图在连梁处突变。
3.2实体墙:没有开洞或者开洞面积不足15%的墙。受力特点体现在像一个整体的悬臂墙,此时弯矩图没有突变同时也不会产生反弯点。
3.3壁式框架:洞口尺寸偏大,而且连梁线与墙肢线刚度相互比较接近的墙。这种情况下,弯矩图会在楼层出发生突变,并在大部分楼层中出现反弯点。
3.4双肢或多肢剪力墙:开洞比较大或者洞口成列形状布置的墙。其受力特点与整体开口较小的墙比较相似。
4.1在进行剪力墙的设计时,需要注意的是应当沿着主轴的方向进行双向或多向布置,最好能够在不同的方向使得剪力墙相连,并最大程度防止出现对直或拉通的情况;在设计抗震功能结构时,应当尽量促使两个方向的侧向刚度相互接近,并保证剪力墙的墙肢截面尺寸符合设计规范。在高层建筑的剪力墙结构中,剪力墙应当沿主轴方向或其它方向进行双向或多向布置,尤其是对于抗震功能的设计,要尽量防止单方向有墙模式的出现,从而保证其能够发挥其应有的作用。另外,剪力墙要保证分布均匀,并且数量适宜。在剪力墙配置较少时,结构的抗侧力刚度也会随之减弱,而如果配置数量较大,墙体也难以真正发挥作用,功能得不到充分发挥,并造成抗侧力的刚度过大,震力也有所增加,最后影响自重。
4.2剪力墙的布置应遵循竖直方向上从下往上布置的顺序,从而防止刚度突变情况的发生。在高层建筑中,剪力墙的墙肢截面应当尽量简易,并保证剪力墙在竖直方向上的高度的均匀性,另外还应当在剪力墙的洞口或者门窗处形成明确的墙肢和连接梁。
4.3剪力墙在布置设计时要均匀分配不易过密,以保证整个结构具有相互适应侧向的刚度,如果侧向刚度过大,会导致墙体自身的重力过大,而且在发生地震时还会增加震力,而增加建筑倒塌的可能性,留下安全隐患。
4.4务必保证剪力墙的洞口或者门窗上下对齐,并且成列布置,另外为了保证剪力墙的承重力,不发生变形,应当避免使用叠合的错洞墙。
4.5短肢剪力墙指的是墙肢的截面长度与厚度之间的比值介于5-8之间,而在高层建筑中,则不能全部都采用短肢剪力墙的结构设计模式,而是需要将短肢剪力墙结构的最大使用高度适当的降低。
5.1剪力墙平面结构布置剪力墙的平面布置首先要做到的就是保证均匀,并保证质量中心和刚度中心处在重合的状态下,减少力矩对墙体的作用力。剪力墙在施工中应当沿主轴方向布置,并保证剪力墙的抗侧力刚度保持在合理范围内,如果有必要可适当增加可利用空间,并保证适当的高度。另外,剪力墙还应当保持合理的间距,通常采用经验公式进行设计,公式为T=(0.05-0.06)n,其中n为建筑结构层数。实际剪力墙的数量应当与计算结果接近。剪力墙处理要具备较强的承重能力与刚度,还应当保证良好的延伸性和弹性,从而保证其在因外力作用产生裂缝时,剪力墙还能够不发生倒塌。
5.2剪力墙约束边缘构件处理约束边缘构件能够促使剪力墙的承载能力得以显著提高,并减少层间位移,同时提高抗震能力,而且对于墙板也能提供稳定作用。剪力墙抗震设计应当满足第一振型的抵抗力矩大于承受力矩的一半以上。约束边缘构件的确定应当以剪力墙相关轴压比为依据。一般来说,抗震等级较高的剪力墙,应当采取层数较多的约束边缘构件,并有效控制剪力墙的均匀性,以从根本上提高墙肢的承重能力。
本工程采用SATWE软件进行设计分析。基于组合有限元法建立空间组合结构计算模型,梁、柱仍采用空间杆单元,由于采用薄壁杆件代表剪力墙遇到上下洞口错位大、框支剪力墙等问题,采用墙元模型是将剪力墙视为若干墙体组成墙组,以节点支撑传递上下的内力,分析精度提高。薄壁杆件模型将剪力墙视为杆件,墙元模型以竖向位移为未知量,多点传力,变形协调。高层建筑结构考虑楼板变形,采用空间板壳单元模拟。计算模型考虑空间扭转变形的同时也要考虑楼板变形,对计算条件要求更高,适用于楼板开有大洞口结构和复杂剪力墙结构等。本工程为剪力墙结构采用墙元模型计算分析。
①考虑偶然偏心和双向地震作用。对于高层建筑结构,考虑偶然偏心计算出位移比大于1.2,说明结构质量和刚度分布不均匀,抗扭能力较差,此时应该计入偶然偏心的影响。②高层建筑振型计算个数。振型组合数如果取值小不能全面反映整体结构地震响应导致计算结果失真,如果计算个数过多会增加计算时间,消耗计算机资源,具体取值根据工程规模、结构规则性等因素确定。振型数太少不能正确考虑模型最大地震作用情况,本工程计算振型个数取15个。③周期折减系数。框架结构中填充墙数量较多,故折减系数较小,剪力墙结构中填充墙较少,通常折减系数取0.9-1.0之间,具体取值多少需要根据实际结构中填充墙多少及对结构刚度影响程度来确定。综合考虑上述因素本工程为落地剪力墙结构,填充墙较少取0.98。④结构阻尼比。阻尼存在延缓结构破坏,延性得到提高。在设计地震反应谱时假定普通结构阻尼比为0.05,软件默认值也为0.05。本工程结构阻尼比取0.05。
①梁刚度放大系数。采用刚性楼板假定计算楼板自身刚度没有考虑到主体结构中,规范规定通过采用放大梁刚度方法来近似考虑楼板刚度对结构贡献。在计算时梁按未考虑刚度放大前数值计算,如果不乘刚度放大系数梁承载力仍能满足荷载组合作用下设计要求,说明梁不存在安全隐患。本工程梁刚度放大系数取1.5。②连梁刚度折减系数。为保证连梁在正常使用状态下不发生开裂或开裂变形在一定范围内,该参数取值不宜小于0.5,实际工程设计时取0.7。此项系数大小对于以墙体开洞方式形成连梁和以普通梁方式输入连梁都起作用。本工程取0.7。③梁扭矩折减系数。若现浇楼板按楼板刚性假定计算,考虑到受力过程中楼板和梁共同抵抗扭矩而对梁扭矩值进行折减,参数取值范围一般为0.4-1.0。定义弹性楼板,在计算时考虑楼板和梁抗扭作用,所以梁扭矩值无需再折减。本工程取0.4。
结构自振周期主要与自身质量、刚度有关,质量越大周期越大,刚度越大周期越小。本工程周期比为1.9794/2.4460=0.81满足要求。如果计算结果超出规范规定范围,说明结构扭转效应明显,通过增加结构主要构件刚度,减小内部主要构件刚度来提高整体抗扭能力。
本工程楼层位移和层间位移比计算结果竖向均匀布置,没有非常明显刚度和质量突变,经软件计算后输出位移图形光滑,没有严重畸变点。由于建筑平面呈一字型布置,在确定设计方案时有一定处理,X方向抗侧刚度还是大于Y方向,结构X方向最大位移值和层问位移比计算值均比Y方向小。经软件计算发现最大位移或层间位移比超过限值,考虑适当加强结构抗侧能力,采取结构方案适当调整,加大主要抗侧构件尺寸等措施。
规范规定高层建筑结构层间侧向刚度不宜小于相邻楼层70%或其上部三层相邻楼层80%;对于计算分析存在薄弱层则按规定将楼层剪力计算值再乘以1.15增大系数,计算结果仍然要满足剪重比规定以保证薄弱楼层抗震能力。为保证结构竖向均匀布置,避免刚度有突变存在,突变处由于在地震作用下变形一致容易破坏。由于本工程结构竖向布置均匀,未形成薄弱层。
采用振型分解反应谱法计算自振周期长结构时,由于地震影响系数取值偏小,相应地震作用计算值偏低,按照规范规定本工程剪重比最小值为0.024。若软件计算剪重比结果小于规范要求时说明结构刚度相对于水平地震剪力过小,结构不安全;但剪重比过分大,虽然结构刚度好但经济指标较高宜适当减少墙、柱等竖向构件截面面积达到节省工程造价目的。本工程地上主体结构一层为第4层,剪重比计算结果满足相应要求。X方向有效质量系数99.49%,Y方向有效质量系数99.47%。
高层钢筋混凝土结构自身重量很大,如果没有侧向荷载作用,结构稳定性良好不会发生失稳破坏,但在风或地震等水平荷载作用下结构一旦发生侧移,由于自身强大惯性产生明显二阶效应。为保证结构良好抗震抗风性能,需要控制二阶效应影响,避免结构发生整体侧向位移变形时失稳倒塌。本工程X向刚重比EJd/GH**2=6.47,Y向刚重比EJd/GH**2=6.42,二者都大于1.4,能够通过结构整体地稳定性验算,都大于2.7,可以不考虑重力二阶效应。
为了保证建筑的使用空间,使建筑物具有相对的稳定性,满足人们对建筑物的要求,就需要对民用建筑进行合理设计,保证建筑结构的稳定。
(一)砖混结构砖混结构是建筑物的主要竖向受力构件,为砖墙或其他类砌体,横向承重的梁、楼面、屋面为钢筋混凝土结构。适合房间面积小、开间进深不大的低层和多层建筑。在进行结构设计时,墙体做为主要受力构件,要保证墙体的厚度和抗震性,保证建筑物整体的稳定性。同时在设计时,PP电子 PP电子平台还要注意施工过程的方便快捷,节省工期。
(二)框架结构框架结构是建筑物中由钢筋混凝土柱和梁共同组成框架来承担竖向荷载和侧向水平力荷载的结构体系。框架结构具有较好的抗震性能和抗弯能力,平面布置比较灵活,有利于布置较大空间,可以满足多功能的使用要求。由于构件截面尺寸的影响,框架结构的房层高度受到限制。
(三)剪力墙结构剪力墙结构是钢筋混凝土墙共同承担竖向荷载和侧向水平力荷载的结构体系。钢筋混凝土墙不仅承受荷载,而且对空间起分割作用。由于主要受力构件均为钢筋混凝土结构墙,所以该结构具有刚度大、抗震性能好、整体性强的特点,适用范围较大,可建造较高的建筑。但受剪力墙间距的影响,开间距太大,对大空间建筑该结构的灵活性就比较差。
(四)筒体结构在现代的高层建筑中筒体结构被广泛地应用,最主要的特点是该结构刚度好、防震能力强。筒体结构主要由核心筒和框筒结构组成。建筑布置灵活、抗侧刚度大、整体性好,能够提供较大的使用空间。筒体结构能有效地抵抗水平荷载,因此比较适用建筑高层及超高层的建筑。在民用建筑设计中还有其他建筑结构设计形式,对这些建筑结构进行设计时不仅要考虑结构的选型、适用条件,还要考虑建筑物的功能和使用年限等多方面因素,才能使民用建筑结构设计更加符合需要,更加科学合理。
现阶段,民用建筑结构设计存在着许多不合理设计现象,许多建筑结构设计为了追求较大的使用空间没有设计抗震墙,使建筑物存在着很大的安全隐患。与此同时,施工与设计方案不一致,擅自更改设计方案,使得建筑施工不合理,设计粗糙简单,也使得建筑存在着安全隐患。在一些设计图纸中,存在着许多漏洞,没有对建筑结构的消防、耐火等级、安全等级进行详细标注,使得建筑结构不符合工程施工要求,达不到居住标准。
在新时期,各种新情况不断出现,土地、原材料、施工设备的成本不断上涨,因此必须在设计时考虑到施工成本,在保证结构安全和施工质量的同时还要做到经济适用。在建筑结构设计时要根据相关知识、工程经验以及建筑功能,根据建筑的实际情况对建筑结构进行合理设计,这样才能使设计更加合理。与此同时,业主对建筑物的审美追求更加强烈,在业主选择户型时不仅仅考虑建筑质量,还注重建筑的个性化。因此在民用建筑结构设计时,要充分考虑到当前市场的需求,建筑结构设计要具有灵活性,方便业主在装修时能够根据自身的需求进行改造,所以必须对墙体结构、门窗位置、梁柱结构、楼梯间等进行合理设计,方便业主改造。随着城市化进程不断加快,人们环保意识的增强,人们对民用建筑的环保要求也越来越高,因此在进行民用建筑结构设计时要保证建筑物的采光、通风符合环保要求,尽量利用自然能源,提高建筑能源的利用效率,使建筑更加符合环保要求。随着时代的发展,社会和市场对民用建筑的要求还会越来越多、越来越高,在对民用建筑结构设计时要符合这些要求,这样才能使民用建筑的市场更加广泛,保证民用建筑的质量和使用寿命。
为了保证民用建筑结构设计的合理性,就必须对建筑结构设计进行合理优化,保证民用建筑结构设计质量,使其达到工程要求。
(一)提升民用建筑结构设计质量针对民用建筑结构设计中存在标注不全、设计粗糙和违反规范条文等问题,应在出施工力之前予以解决,这就要求建筑结构设计人员具有一定的专业知识和职业素养。定期对设计人员进行专业培训学习,不断提升设计人员的业务水平和责任心,端正设计人员的态度,提升建筑结构设计的水平和质量。在选择设计方时,要对设计方的相关证书和资质进行审查,保证民用建筑结构的设计质量,从源头上提升建筑结构设计的安全性和整个建筑工程的质量。
(二)优化民用建筑结构模型民用建筑涉及国计民生,是与人民群众利益联系最紧密的建筑工程,因此在设计前必须对民用建筑结构模型进行合理优化设计,对房屋的结构体系、围护结构、房屋的各个细节结构进行合理优化设计,保证建筑结构的承重、受力符合相关规范和要求。在进行建筑结构设计时还要充分考虑经济原则,保证建筑结构安全的同时还要尽可能降低建筑结构的成本,实现经济效益的最大化。
(三)提高民用建筑结构设计的安全性现阶段的民用设计普遍存在着抗震设计不足,结构设计不合理等现象。因此,为了保证建筑结构的安全性和使用寿命,必须对民用建筑结构进行合理设计。在民用建筑结构设计时,要尽可能选择合理的结构类型。比如现阶段运用广泛钢结构,钢结构与传统的钢筋混凝土结构相比,具有强度高、质量轻、工期短等特点,适应现阶段民用建筑结构的设计要求。与此同时,钢结构的大空间布置,能更好地保证了民用建筑空间设置的灵活性,为施工和业主的装修设计提供了便利。此外,使用钢结构进行设计施工时能有限地减少水泥、砂石等建筑原料的使用,能大大减少施工成本,降低工程造价。同时还能降低环境污染,实现建筑的可持续发展,提高民用建筑的社会效益。为了更好地保障民用建筑的安全性,建筑物地基基础部分的设计不容忽视,在进行民用建筑结构设计时,要充分考虑场地条件及地基承载力特征值,根据建筑本身的结构特点选择合适的基础结构形式,保证地基基础部分受力均匀,满足整个建筑的设计要求。当施工过程中出现问题时能够及时与设计人员沟通,共同商议处理方法,保证施工进度和施工质量,使地基基础部分符合建筑设计的要求。
1.1玻璃钢门窗玻璃钢门窗轻质高强,其拉伸强度为350MPa以上,弯曲强度为260MPa以上,为铝合金的2倍、塑钢的4倍左右,从而弥补了塑钢门窗因强度低容易变形的弱点。玻璃钢型材的弯曲弹性模量较高、刚性好,故玻璃钢门窗适宜较大尺寸的窗或较高风压场合的门窗,且尺寸稳定、隔音性能好。玻璃钢型材的热变形温度为200℃,其线膨胀系数较低,与建筑物和玻璃相当,在冷热温差较大的环境下,不易与建筑物及玻璃之间产生缝隙,门窗的气密性能好,大大提高了门窗的密封性能。与目前市场上使用的铝合金门窗和塑钢门窗相比,优质的玻璃钢/复合材料门窗的节能效果非常好,据有关部门检测,玻璃钢门窗的保温性能优于国家标准中规定的保温性能一级指标。在建筑节能设计标准中,要求门窗材料选用低导热系数的材料,玻璃钢门窗不但密封性能良好,而且有较好的遮阳功能和良好的保温性能。玻璃钢型材对热辐射和太阳辐射具有隔断性,故玻璃钢窗体具有很好的隔热性能。玻璃钢型材耐严寒和耐高温性能好,使得玻璃钢门窗可以广泛应用于严寒和高温地区。由于玻璃钢型材内部树脂和纤维的结构特点,使得其具有微观弹性,有利于吸收声波,从而使玻璃钢窗体具有良好的隔音性能。在建筑物中,门窗、墙体、屋面、地面为建筑能耗的四大部位,其中门窗排列首位,房屋建筑的能源损失中有50%是通过门窗流失的,尤其是公共建筑的窗墙比高达70%,更加大了能源的损失。因此,门窗节能在整个节能建筑中起到至关重要的作用,减少门窗的能源损失是当前建筑节能的主要途径之一,在建筑结构中大力开发使用玻璃钢/复合材料门窗具有十分重要的意义。
1.2玻璃钢模板使用玻璃钢/复合材料制作的模板能够一次性达到通高,而且不易与混凝土相互粘结,所浇筑出的混凝土成品没有横向接缝(只是在竖向上会有一道接缝),特别是圆柱体,浇筑出来圆度比较准确,且表面光滑平整,无气泡和皱纹,无外露纤维和毛刺现象,其密封性、表面平整度是木模和钢模所无法比拟的,而且色泽一致,垂直角度的误差也较小。采用玻璃钢制作圆柱模板只需要在接口处用角钢加螺栓予以固定,之后用钢丝缆风绳的一端拉住柱筋上端,而另一端只需固定在浇筑之后的混凝土楼板上即可,不需另外设置柱箍或是搭设支撑架。玻璃钢模板与木模、钢模相比易加工成型,可以一次性封模,不用接长,而且玻璃钢模板由于质量轻,拆装非常方便,具有便于清洁和维护等特点。因此,使用玻璃钢模板能够明显地减轻劳动强度,提高建筑施工效率,有利于降低工程造价。另外,玻璃钢模板有较强的耐磨性,所以重复利用次数也较多。
1.3玻璃钢筋混凝土是应用最广的建筑材料,通常采用钢筋来增加其强度,但钢筋存在着腐蚀问题,而建筑腐蚀是全球建筑业所面临的一个十分棘手的问题。当钢筋混凝土在具有侵蚀性的环境中工作时,钢筋在各种腐蚀性气体、添加剂和盐的作用下生锈而使钢筋本身体积膨胀,从而导致混凝土开裂,会降低混凝土的使用寿命。玻璃钢筋通常是以乙烯基树脂、聚酯树脂、酚醛树脂或环氧树脂作为基体材料,以无碱玻璃纤维作为增强材料,采用拉挤工艺成型,具有耐腐蚀性强、电磁绝缘性能优良和力学性能优良的特性。在建筑结构中使用玻璃钢筋增强材料可以提高水泥基体的抗弯、抗拉和抗冲击强度,由于玻璃钢筋的耐腐蚀性强,特别适用于需使用盐防冻的混凝土结构、近海地区的混凝土结构和地下工程。玻璃钢筋具有优良的电磁波透过性,对于某些特殊建筑设施,例如中的核磁共振成像室,或采用射频技术来识别预付费客户的公路收费站通道来讲,采用玻璃钢筋是最好的选择。目前,玻璃钢筋已在很多工程项目中得以应用,并有效地替代了钢筋。由于玻璃钢/复合材料筋的力学性能优良和良好的耐腐蚀能力,故具有广阔的开发应用前景。
1.4玻璃钢加固混凝土梁玻璃钢/复合材料作为一种结构加固材料,有与混凝同工作的基础,能适应各种不同的工作环境。玻璃钢的线膨胀系数与普通混凝土相近,这样就不会因温度变化而引起二者之间的粘结破坏,在对混凝土表面进行适当处理后再粘糊玻璃钢,可以保证两者之间有良好的粘结力。玻璃钢片材、板材作为加固材料具有强度高、施工方便且周期短、抗渗性好和耐腐蚀等优点。用玻璃丝布包覆加固混凝土梁,采用环氧树脂作为粘结剂,玻璃丝布与混凝土结合面之间不会发生滑移破坏,粘结面会有效地传递应力。用玻璃钢加固的梁在其初始受力阶段,玻璃丝布的包裹层数对梁的刚度及变形的影响均很小。在受拉钢筋屈服以后,外包的玻璃钢对梁的刚度的作用效果很明显,从而使梁的变形减小。由此可以看出,运用玻璃钢加固混凝土梁可明显提高混凝土梁的受力特性,延长梁的使用寿命,因而具有广泛的应用前景。近几年来,国内外的一些学者相继开展了一种新型的纤维增强复合材料加固方法———内嵌(简称NSM)加固方法的试验研究、理论分析和工程应用。与外贴玻璃钢片材相比,嵌入式加固法除了具有高强、高效、耐腐蚀等优点外,还有表面处理工作量降低等优点。因为外贴加固的表面打磨工序往往耗时较长,而嵌入式加固只需使用专用工具在混凝土表面剔槽,不需进行大面积处理,可以节省工期;玻璃钢因内置而得到较好的保护,其抗冲击性、耐久性、防火性能等得以提高,如用于桥面板负弯矩区加固具有明显的优势;玻璃钢筋或板条可以较方便地锚固于相邻的构件上。随着研究的不断深入,玻璃钢/复合材料作为一种轻质高强、高性能结构材料,在工程加固领域的应用将会越来越广泛,发展趋势良好。
1.5玻璃钢在建筑结构中的其他应用在采暖通风工程中,玻璃钢是一种很好的节能环保材料,从20世纪80年代开始已大量用于制造冷却塔、通风橱、送风管、排气管、栅板及防腐风机罩等。目前,国内研发的玻璃钢/复合材料保温管可用于输送热水及供暖,用以替代传统的金属保温管。玻璃钢可制成波纹板、带肋板、空心板或夹芯板,组成各种形状的拱、壳以及穹顶等空间结构用于工业厂房等结构中,具有易成形、施工方便、质量轻、保温性能好、色泽鲜亮和耐候性好等优点,采用轻质高强的玻璃钢组装件作为建筑材料,将大大减轻工人的劳动强度,减少劳动工时,缩短施工周期,对资源保护和能源消耗也有积极的作用。在美国复合材料制造商协会(ACMA)举办的2010年复合材料大会上,一座两层的房屋获得了大会的“展会最佳奖”,该房屋由预制的以防火玻璃钢为蒙皮的夹层结构板组成;加利福尼亚的复合Kreysler公司获奖的加利福尼亚海湾之屋是一个单体式结构,由9块定制的防火玻璃钢夹层板组成;另一个创新的Kreysler项目是在一个办公楼上采用了仿造石材的玻璃钢建筑外饰。玻璃钢文化墙因其高雅亮丽的外形和独特的艺术风格也备受推崇。另外,玻璃钢/复合材料在冷库、岗亭、仿古建筑、微波塔楼、屏蔽房、野营活动房等领域也得到了广泛应用,并已发挥了重要的作用。
1.1大样详图针对某个节点或部位进行详细说明,即放大图,建筑结构楼梯等均有大样详图,做到建筑的外观和内部结构保持一致并达到最佳比例,做到最标准化,以达到施工方便、快捷,并且保持简单易操作的原则。在尺寸和标高的问题上,一定要严格遵守规则,不可随意变更,并应当保证两个图都有实际依据。也可以稍作修改完成设计。使建筑的外观以及内部的结构强度达到最优配比,并且保持方便施工的原则,在尺寸和标高的问题上一定要严格遵守规则,不可随意变更,但是,要注意结构标高与建筑标高之间的差别,他们是不同的。注意增减的调配要恰当,量的改变上一定要遵循客观精准的原则。
1.2楼梯楼梯板的设计要根据人流密谋、承载重力的不同进行设计,不能千篇一律的都是一种规格,特别是楼梯梯度要根据实际需要做好控制,梯梁的位置要根据需要安排好,做到楼层上下位置统一,这样做的目的兼顾了使用功能,又美观大方,对以后进行装饰做好铺垫。一些检测达不到标准和不合格的地方可以利用折板型楼梯解决问题。注意梁的高度以及净空之间的配合程度,并且要使用恰当的温度进行操作,长度和宽度也都要配比,沉降要保持均匀,不可偏移或者局部下沉,产生结构被破坏。
1.3基础这个环节一定要选择好材料,特别是混凝土标号必须精准,不然就会造成沉降,影响使用。这个阶段要注意保证强度要高,在钢筋采用上,一般情况下是标号C25的。配筋应当合乎标准,要精心选择使用,不能使用不合格的钢筋,拉力强度是检测的标准值。基地面积最多只能用一次,要适时修整宽窄程度,如果承重不均匀,柱体和墙体的位置就在在实际中进行转换,
2.1关于箱、筏基础底板的阳角问题阳角面积在整个基础底面积中所占比例较小,可砍成直角或斜角。如果底板钢筋双向双排,且在悬挑部分不变,阳角不必加辅射筋,达到一定强度后就可以了,做太多变动没有实际意义,这就需要专业人员进行灵活控制。
2.2关于箱、筏基础底板的挑板问题在建筑的整体过程中,必须保证节约材料的原则,避免不必要的浪费,在出挑板底板部分的钢筋,按照一般的布置方法布置的时候,不大可能出现钢筋的数量影响所有底板的钢筋,因此算起来还是比较节省的。特定部位设挑板,还可调整沉降差和整体倾斜。出挑板工作完成以后,可以减少基地所具有的附加应力,特殊需要可以使用窗井进行工作。
2.3框架结构顶层的柱子纵筋问题框架结构顶层的柱子纵筋有时比下层大许多,要使用大直径的钢筋,有时候施工人员只是做了简单的捆绑,达不到对应标准,这样做不但不能增加拉力,还减少了钢筋与混凝土的裹力。正确的方式应该是采用机械连接或焊接。
2.4关于梁、板的计算跨度梁板结构是在梁的中心线上有一刚性支座,取消梁的概念,将梁板统一认为是一变截面板。在扁梁结构中,梁高比板厚大不了多少时,应将计算长度取至梁中心,选梁中心处的弯距和梁厚,及梁边弯距和板厚配筋,取二者大值配筋。
2.5柱子对结构的稳定性影响柱子对结构的稳定性以及抗击地震的反应能力是很高的,在整修结构中起到重要作用,一般的施工中,柱子的造价均不高,特别是在整体比例中占量并不大。柱子纵筋上升为计算值2.5倍时,需要按需要适当提升纵筋的比例。
2.6抗震缝抗震缝是应对自然灾害的有效措施,间隙一定要留足,按照设计标准和要求,防震缝在地震时有40%发生了碰撞,所以在设计之初就应增大抗震缝间距,保证在灾害发生时,能及时有效的起到保护作用。
2.7关于回弹再压缩建筑基坑在挖掘后会产生一定程度的反弹,在对建筑箱基进行沉降值计算时,应以基底的压力进行计算和考虑,通过专业分析,落实到设计方案中。坑边土一定程度上影响了计算的精确性,往往造成计算值沉降大于实际沉降的情况,一般情况都应该预留出来,考虑到实际操作的便利,这就需要设计人员对现场的深度了解的掌握专业的熟练能力。
1.1地下室设计中存在的问题建筑结构设计单位在设计建筑结构的时候,必须要加强对地基稳固度的重视程度。地基的质量在很大程度上会受到地下室设计状况的影响,所以说做好地下室的设计工作时非常重要的。从我国很多建筑结构设计企业的发展现状来看,其中还存在不少问题,例如,没有严格要求地下室设计成效;在未详细了解建筑物墙体厚度、混凝土强度、建筑材料性能的基础上,就盲目地开展地下室设计工作,这直接影响到了建筑结构设计工作的可靠性,对将来的建筑工程施工质量而言,埋下了安全隐患。
1.2图纸设计中存在的问题建筑工程的施工步骤都是按照事先设计的施工图纸展开的,所以对于整个施工环节来说,建筑施工设计图纸有着至关重要的作用。可以说图纸设计工作的成效,会对整个直接建筑工程的施工质量产生重大影响。然而,从我国建筑施工企业的施工现状来看,很多施工团队都忽视了设计图纸工作的重要性,采取了不认真的态度对待施工图纸设计工作,使得施工图纸不够严谨,缺乏学科、合理性。例如,在设计各层结构的具体施工图的时候,使用了不标准的图集,也没有弄清楚各层梁、柱、墙的详细构造。
1.3建筑选址中存在的问题我们常说:“万事开头难。”如此可见,要想做好一件事情,就必须要有一个好的开头。这句话运用到建筑结构的设计工作中,也就意味着要做好最基本的结构设计工作。对于任何建筑施工项目而言,倘若选址存在不稳定状况,那么再好的建筑结构也无法为整个建筑工程的施工质量提供保障。当前,在建筑选址中存在的选址缺乏合理性、科学性等问题,直接影响到了建筑施工项目的安全系数,不利于提高建筑施工项目的质量。
2.1优化建筑结构设建筑结构设计单位在优化设计高层建筑结构的时候,需要注意几个问题:(1)设计工作要为提高建筑工程的施工质量服务;(2)要尽可能地控制好工程造价,将之设计在可接受范围内。对此,需要建筑结构设计单位,在开展设计工作的过程中,要充分考虑商的经济实力和实际的施工需求,权衡建筑项目的施工质量与建筑施工企业回报之间关系。所以建筑结构设计单位,要借助“强柱弱梁、强剪弱弯、强压弱拉”的原则,对建筑结构进行优化设计,促使建筑结构设计单位制定的方案可以达到令人满意的效果。
2.2加强沟通与交流建筑结构设计师在开展建筑结构设计工作之前,应该要加强与承包商、商之间的沟通与交流,并通过与他们之间展开的交谈活动,了解到建筑工程的具体施工要求,同时充分了解本次到建筑工程的施工基调,对建筑工程的施工现场以及地质条件进行整体把握,明确建筑方每个部门需要注意和配合的地方,将建筑结构设计的基本方案确定下来。
2.3明确参数含义在建筑工程中的有些专业术语难以区分,对于建筑结构的设计师而言,在没有明确参数定义的前提下,开展设计工作,必然会影响到设计质量。理论上而言,参数是没有明确界限的,但是在具体建筑工程施工环节中,每个参数都需要界定实际有效意义,所以设计人员应该明确参数的含义,并在实际的设计工作过程中,对这些参数加以正确利用。
在进行高层连体结构施工过程中,钢框架结构必须切实注意强度要求。如果是现浇的连体结构梁板,其强度可以按照T形断面进行计算。在对框架梁跨中配筋量进行计算时,可以按照T形去考虑跨中截面。在对框架梁支座的配筋量进行计算时,如果也是按T形考虑,这样计算的强度是不对的。因为在实际施工过程中,钢框架结构梁支座处是负弯矩,此时梁翼缘处在受拉区,而梁底则在受压区,主要为倒T形截面。所以,只能按照矩形截面计算。
2.1高层连体建筑结构施工测量技术要点按照建筑形状,做好内控点的设置。譬如从矩形建筑来看,可以将内控点设置在四角,要避开梁的阻挡,确保顶层到底层可以通视。为了做好竖向投测,应该在上部楼层每层相同位置,做好放线mm放线洞口。从预留洞来看,不能出现偏位,也不能被遮掩,以确保上下都具有良好的通视效果。另外,要对底层轴线网进行仔细地校核,再经过复核验收后才能向上投测。要做好内控点的控制,不能将料具堆放在底层内控点钢板上。为了做好仪器的架设,应确保顶板排架与钢板相互避开。主要做好以下几个方面:一是将垂准仪架设在底层内控点上,把有机玻璃板平放在需投点的放线洞口,再通过激光引测,并将十字交叉点与激光点相对准,并引到楼板混凝土上,进行标记,最后将有机玻璃板撤除。将小模板钉在放线洞口,用墨斗弹线。二是用全站仪做好校核,待其闭合之后,再进行细部放线。以内控点标记为准,用全站仪将轴线控制网放出来,并弹好线,作为按照柱模板、上层楼板梁安装的重要依据。等到完成每层楼板放线复核后,就可以拆掉洞口模板,以确保上层测量放线能够顺利通视。在没有实施竖向测量投点的时候,应该在各个放线洞口将防护盖板盖好,以防出现坠物伤人的问题。三是布设好轴线控制网。先将主控轴定下来,再对轴网进行加密处理,切实把握住关键部位和关键节点。在完成结构施工后,应对建筑物结构偏差进行测量和记录。
2.2高层连体建筑结构浇筑施工技术要点在进行混凝土浇筑时,应按照标号从高到低的顺序进行浇筑,先对高标号的进行浇筑,再对低标号的进行浇筑。先完成墙柱的浇筑,再完成梁板的浇筑。在进行浇筑过程中,应选好一个点,当达到标高后,使混凝土向前流动,然后再在坡面进行浇筑,逐渐推进。要严格控制每层混凝土浇筑的间隔时间,其时间综合要控制在初凝时间之内。在采用地泵泵送时,应尽可能地少用弯管作为输送管道,要高度重视施工安全问题,以便施工、清洗、维修和拆卸。输送管道应尽可能地采用管径相同的输送管。要保证输送管接头的严密性,并能满足强度要求,以便快速装拆。要确保管段不出现龟裂、损伤、弯折等问题。应该对模板支撑的纵横间距处采用加密处理,并做好剪刀撑的布设。应对布料机进行架空,不能将其支撑在钢筋骨架之上。在进行梁板混凝土浇筑时,不能在相同位置连续布料,而应采用水平移动的方式实施布料。
2.3高层连体建筑结构的转换层施工技术要点从高层连体建筑结构来看,塔楼连体结构的位置非常高,高达几十米甚至百米,而跨度也可达到十几米甚至几十米。如果按照常规方式进行施工,必须搭设很高的超高支模架。因为在巨大荷载作用下,不仅难以保证架体自身的稳定,就连从裙房屋面也难以承受。所以,如果确保连体结构悬空施工,是当前的重要课题之一。从转换层连体结构来看,一般是用钢梁承重。在安装钢梁时,首先要将起重机安装在裙房屋面,并把钢主梁运输到裙楼屋面,且做好滑移平台的搭设。将滑车与卷扬机组成水平动力系统,并把钢主梁逐根平移,当到一定位置后,再进行垂直放置与固定。在施工过程中,要做好静滑车组的悬挂,并做好动滑车组的安装,利用卷扬机将钢丝绳引出来,安装动静结合的方式,把动滑车组与静滑车组连接起来。在进行提升钢主梁前,要做好试吊。第一次提高0.5m,第二次再提高0.5m。只有等到所有设备性能能完全符合安全要求之后,才能正式进行提升作业。可以同时启动两台卷扬机,再间隔两秒后,再启动另外两台。在提升时,必须确保钢主梁始终处于水平状态,假如出现误差,就需要及时调节。
1.1强柱弱梁为了提高高层建筑的抗震性能,结构设计时应该遵循强柱弱梁的原则。强柱弱梁有利于梁上塑性铰的形成,从而削弱地震作用,对框架柱起到良好的保护作用。如果塑性铰存在于梁上,说明塑性铰所需要的非弹性变形量较小,分布也较为均匀。如果柱中出现塑性铰,则表明非弹性变形集中于某一层的柱中,因此对柱的延性要求会较高。但是在实际工程中往往很难实现对柱的延性要求,如果处理不好,还容易出现较大层间的侧移,对建筑的整个结构安全性会产生影响。为了避免侧移对结构稳定性、安全性的威胁,设计时通常会将非弹性变形限制于梁内,使框架柱的弯承载能力得到保证,降低柱端屈服的产生。
1.2强剪弱弯延性破坏的主要形式就是弯曲破坏,这种破坏通常具有一定的预兆性,比如出现开裂或下挠等现象。但是剪切破坏则是一种脆性破坏,无法预知,如果建筑结构的某个构件出现剪性破坏,这个构件的抗震能力将会丧失,会产生更大的破坏性,甚至造成建筑倒塌。因此,延性设计的强剪弱弯,就是在避免构件与节点发生脆性破坏的前提下,保证建筑结构的整体安全性。为了避免梁、柱等构件发生脆性破坏,应该保证构件的受剪承载力要比构件屈服时的实际剪力高。因此,对于框架结构的高层建筑,在设计过程中应遵循强剪弱弯的原则,并依据承载力值与剪力值来进行科学设计。
1.3节点强锚固梁柱等构件的搭接处即为节点,对于高层建筑来说,节点最容易受到地震水平作用的破坏,因此,节点属于延性的薄弱环节,设计时必须注重节点和锚固的安全性。建筑结构构件的节点破坏主要原因是节点核心部位箍筋足或不到位引起的。为了提升节点的延性,必须保证节点部位混凝土的等级和箍筋的数量。设计时还可以在保证锚固长度的基础上,叠加一定的抗震附加锚固长度,利用锚固的长度来加强节点的延性。为保证梁柱屈服后节点的约束能力,框架节点的延性设计必须依据相关标准进行。
2.1连梁的延性设计在地震作用下,连梁的破坏通常会表现为局部混凝土压碎。其主要原因可能是跨高比过小,或者构件的抗弯能力高于其抗剪能力。如果出现较大震级,连梁应首先受弯出铰,所以必须控制好其跨高比。在室内如果连梁的高比过小,可考虑利用水平缝来分设两梁。通常室外连梁可以适当开大建筑窗,并将跨高比控制在3左右。为了遵循强剪弱弯的原则,配筋时应该将楼板钢筋的影响考虑进去,不用考虑对纵筋的加强;另外,需要配路箍筋并进行强化,可采用对角交叉配筋形式来提高连梁的延性。
2.2剪力墙和柱的延性设计剪力墙在布置时应该尽量均匀对称,使两个主轴方向的刚度尽量相同。墙体的开洞也应该均匀,尽量减少或避免错洞布置。通常独立墙的能量大多通过墙底出铰来进行消散。而联肢墙,则需要通过设置合理的开洞来消散能量,使其能够在连梁的梁端出铰或墙底出铰,而墙体的其他地方都不会存在塑性铰。在构造方面为了减少剪力墙的剪切破坏,可以在底部加强区适当增加剪力墙的水平受力筋,从而使剪力墙的抗剪能力得到提高。另外,还可考虑将柱箍筋的全长进行加密,以保证框架柱的抗侧能力。
2.3楼梯的延性设计楼梯的周围大多为剪力墙或填充墙,因此,其抗侧刚度要比其他位置的抗侧刚度大许多,地震时会表现得更加明显。楼梯间的结构受力情况较为复杂,楼梯板和平台梁需要承受弯矩、剪力和扭矩等综合作用。设计时可考虑采用板筋上下拉通和提高梯梁配箍率的方法来增加其延性。
2.4填充墙的延性设计填充墙的布置也应该做到均匀、对称,应该尽量减少填充墙引起的房屋附加扭矩。设计时可将填充墙作为荷载输入,其结构受力可不考虑。但是填充墙自身都具有较大的刚度,因此,应该尽量考虑沿竖向连续布置,使其形成砌体剪力墙,起到消耗地震能量的作用,从而避免薄弱层的出现。而且地震时填充墙受到的破坏也会比连梁早,这样便对主体结构起到了保护作用。另外,为了避免地震破坏时,填充墙对人员的伤害,填充墙应该采用较为新型的轻质材料,而且要设置一定的水平接续筋,使其与主体的连接更加可靠。
上一篇 : 郑州建材市PP电子 PP电子平台场有哪些